Percolation systems away from the critical point

نویسندگان

  • DEEPAK DHAR
  • Deepak Dhar
چکیده

This article reviews some effects of disorder in percolation systems away from the critical density pc. For densities below pc, the statistics of large clusters defines the animals problem. Its relation to the directed animals problem and the Lee–Yang edge singularity problem is described. Rare compact clusters give rise to Griffiths singularities in the free energy of diluted ferromagnets, and lead to a very slow relaxation of magnetization. In biased diffusion on percolation clusters, trapping in dead-end branches leads to asymptotic drift velocity becoming zero for strong bias, and very slow relaxation of velocity near the critical bias field.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Microsoft Technical Report MSR-TR-98-26 UNIFORM BOUNDEDNESS OF CRITICAL CROSSING PROBABILITIES IMPLIES HYPERSCALING

We consider bond percolation on the d-dimensional hypercubic lattice. Assuming the existence of a single critical exponent, the exponent ρ describing the decay rate of point-to-plane crossings at the critical point, we prove that hyperscaling holds whenever critical rectangle crossing probabilities are uniformly bounded away from 1.

متن کامل

Uniform boundedness of critical crossing probabilities implies hyperscaling

We consider bond percolation on the d-dimensional hypercubic lattice. Assuming the existence of a single critical exponent, the exponent ρ describing the decay rate of point-to-plane crossings at the critical point, we prove that hyperscaling holds whenever critical rectangle crossing probabilities are uniformly bounded away from 1.

متن کامل

Monopole Percolation in the Compact Abelian Higgs Model

We have studied the monopole-percolation phenomenon in the four dimensional Abelian theory that contains compact U (1) gauge fields coupled to uni-tary norm Higgs fields. We have determined the location of the percolation transition line in the plane (β g , β H). This line overlaps the confined-Coulomb and the confined-Higgs phase transition lines, originated by a monopole-condensation mechanis...

متن کامل

Stochastic Renormalization Group in Percolation: I. Fluctuations and Crossover

A generalization of the Renormalization Group, which describes order-parameter fluctuations in finite systems, is developed in the specific context of percolation. This “Stochastic Renormalization Group” (SRG) expresses statistical self-similarity through a non-stationary branching process. The SRG provides a theoretical basis for analytical or numerical approximations, both at and away from cr...

متن کامل

Introduction to Schramm-Loewner evolution and its application to critical systems

In this short review we look at recent advances in Schramm-Loewner Evolution (SLE) theory and its application to critical phenomena. The application of SLE goes beyond critical systems to other time dependent, scale invariant phenomena such as turbulence, sand-piles and watersheds. Through the use of SLE, the evolution of conformally invariant paths on the complex plane can be followed; hence a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001